
Problem T1. Focus on sketches (13 points)
Part A. Ballistics (4.5 points)

i. (0.8 pts) When the stone is thrown vertically upwards, it

can reach the point x = 0, z = v2
0/2g (as it follows from the

energy conservation law). Comparing this with the inequality

z ≤ z0 − kx2 we conclude that

z0 = v2
0/2g. [0.3 pts]

Let us consider the asymptotics z → −∞; the trajectory of

the stone is a parabola, and at this limit, the horizontal dis-

placement (for the given z) is very sensitive with respect to the

curvature of the parabola: the flatter the parabola, the larger

the displacement. The parabola has the flattest shape when

the stone is thrown horizontally, x = v0t and z = −gt2/2, i.e.

its trajectory is given by z = −gx2/2v2
0 . Now, let us recall

that z ≤ z0 − kx2, i.e. −gx2/2v2
0 ≤ z0 − kx2 ⇒ k ≤ g/2v2

0 .

Note that k < g/2v2
0 would imply that there is a gap between

the parabolic region z ≤ z0 − kx2 and the given trajectory

z = −gx2/2v2
0 . This trajectory is supposed to be optimal for

hitting targets far below (z → −∞), so there should be no such

a gap, and hence, we can exclude the option k < g/2v2
0 . This

leaves us with

k = g/2v2
0 . [0.5 pts]

ii. (1.2 pts) Let us note that the

stone trajectory is reversible and due

to the energy conservation law, one

can equivalently ask, what is the min-

imal initial speed needed for a stone

to be thrown from the topmost point

of the spherical building down to the

ground without hitting the roof, and what is the respective tra-

jectory. It is easy to understand that the trajectory either needs

to touch the roof, or start horizontally from the topmost point

with the curvature radius equal to R. Indeed, if neither were

the case, it would be possible to keep the same throwing angle

and just reduce the speed a little bit — the stone would still

reach the ground without hitting the roof. Further, if it were

tangent at the topmost point, the trajectory wouldn’t touch

nor intersect the roof anywhere else, because the curvature of

the parabola has maximum at its topmost point. Then, it

would be possible to keep the initial speed constant, and in-

crease slightly the throwing angle (from horizontal to slightly

upwards): the new trajectory wouldn’t be neither tangent at

the top nor touch the roof at any other point; now we can re-

duce the initial speed as we argued previously. So we conclude

that the optimal trajectory needs to touch the roof somewhere,

as shown in Fig.

iii. (2.5 pts) The brute force approach would be writing down

the condition that the optimal trajectory intersects with the

building at two points and touches at one. This would be de-

scribed by a fourth order algebraic equation and therefore, it is

not realistic to accomplish such a solution within a reasonable

time frame.

Note that the interior of the building needs to lie inside the

region where the targets can be hit with a stone thrown from

the top with initial speed vmin. Indeed, if we can throw over

the building, we can hit anything inside by lowering the throw-

ing angle. On the other hand, the boundary of the targetable

region needs to touch the building. Indeed, if there were a

gap, it would be possible to hit a target just above the point

where the optimal trajectory touches the building; the traject-

ory through that target wouldn’t touch the building anywhere,

hence we arrive at a contradiction.

So, with v0 corresponding to the optimal trajectory, the tar-

getable region touches the building; due to symmetry, overall

there are two touching points (for smaller speeds, there would

be four, and for larger speeds, there would be none). With the

origin at the top of the building, the intersection points are

defined by the following system of equations:

x2 + z2 + 2zR = 0, z =
v2

0

2g
−

gx2

2v2
0

.

Upon eliminating z, this becomes a biquadratic equation for x:

x4

(

g

2v2
0

)2

+ x2

(

1

2
−

gR

v2
0

)

+

(

v2
0

4g
+ R

)

v2
0

g
= 0.

Hence the speed by which the real-valued solutions disappear

can be found from the condition that the discriminant vanishes:
(

1

2
−

gR

v2
0

)2

=
1

4
+

gR

v2
0

=⇒
gR

v2
0

= 2.

Bearing in mind that due to the energy conservation law, at

the ground level the squared speed is increased by 4gR. Thus

we finally obtain

vmin =
√

v2
0 + 4gR = 3

√

gR

2
.

Part B. Mist (4 points)

i. (0.8 pts) In the plane’s reference frame, along the channel

between two streamlines the volume flux of air (volume flow

rate) is constant due to continuity. The volume flux is the

product of speed and channel’s cross-section area, which, due

to the two-dimensional geometry, is proportional to the channel

width and can be measured from the Fig. Due to the absence of

wind, the unperturbed air’s speed in the plane’s frame is just v0.

So, upon measuring the dimensions a = 10 mm and b = 13 mm

(see Fig), we can write v0a = ub and hence u = v0
a
b
. Since at

point P , the streamlines are horizontal where all the velocities

are parallel, the vector addition is reduced to the scalar addi-

tion: the air’s ground speed vP = v0 − u = v0(1 − a
b
) = 23 m/s.

ii. (1.2 pts) Although the dynamic pressure 1

2
ρv2 is relatively

small, it gives rise to some adiabatic expansion and compres-

sion. In expanding regions the temperature will drop and hence,

the pressure of saturated vapours will also drop. If the dew

point is reached, a stream of droplets will appear. This process

will start in a point where the adiabatic expansion is maximal,

i.e. where the hydrostatic pressure is minimal and consequently,

as it follows from the Bernoulli’s law p + 1

2
ρv2 = const, the dy-

namic pressure is maximal: in the place where the air speed in
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wing’s frame is maximal and the streamline distance minimal.

Such a point Q is marked in Fig.

iii. (2 pts) First we need to calculate the dew point for the air

of given water content (since the relative pressure change will

be small, we can ignore the dependence of the dew point on

pressure). The water vapour pressure is pw = psar = 2.08 kPa.

The relative change of the pressure of the saturated vapour is

small, so we can linearize its temperature dependence:

psa − pw

Ta − T
=

psb − psa

Tb − Ta

=⇒ Ta − T = (Tb − Ta)
(1 − r)psa

psb − psa

;

numerically T ≈ 291.5 K. Further we need to relate the air

speed to the temperature. To this end we need to use the en-

ergy conservation law. A convenient ready-to-use form of it is

provided by the Bernoulli’s law. Applying this law will give

a good approximation of the reality, but strictly speaking, it

needs to be modified to take into account the compressibility

of air and the associated expansion/contraction work. Con-

sider one mole of air, which has the mass µ and the volume

V = RT/p. Apparently the process is fast and the air par-

cels are large, so that heat transfer across the air parcels is

negligible. Additionally, the process is subsonic; all together

we can conclude that the process is adiabatic. Consider a seg-

ment of a tube formed by the streamlines. Let us denote the

physical quantities at its one end by index 1, and at the other

end — by index 2. Then, while one mole of gas flows into

the tube at one end, as much flows out at the other end. The

inflow carries in kinetic energy 1

2
µv2

1 , and the outflow carries

out 1

2
µv2

2 . The inflowing gas receives work due to the pushing

gas equal to p1V1 = RT1, the outflowing gas performs work

p2V2 = RT2. Let’s define molar heat capacities CV = µcV and

Cp = µcp. The inflow carries in heat energy CV RT1, and the

outflow carries out CV RT2. All together, the energy balance

can be written as 1

2
µv2 + CpT = const. From this we can

easily express ∆ v2

2
= 1

C
v2

crit(
a2

c2 − 1) = cp∆T , where c is the

streamline distance at the point Q, and further

vcrit = c

√

2cp∆T

a2 − c2
≈ 23 m/s,

where we have used c ≈ 4.5 mm and ∆T = 1.5 K. Note that

in reality, the required speed is probably somewhat higher, be-

cause for a fast condensation, a considerable over-saturation is

needed. However, within an order of magnitude, this estimate

remains valid.

Part C. Magnetic straws (4.5 points)

i. (0.8 pts) Due to the superconduct-

ing walls, the magnetic field lines cannot

cross the walls, so the flux is constant

along the tube. For a closed contour in-

side the tube, there should be no circu-

lation of the magnetic field, hence the

field lines cannot be curved, and the field

needs to be homogeneous. The field lines

close from outside the tube, similarly to a solenoid.

ii. (1.2 pts) Let us consider the change of the magnetic energy

when the tube is stretched (virtually) by a small amount ∆l.

Note that the magnetic flux trough the tube is conserved: any

change of flux would imply a non-zero electromotive force dΦ

dt
,

and for a zero resistivity, an infinite current. So, the induc-

tion B = Φ

πr2 . The energy density of the magnetic field is B2

2µ0

.

Thus, the change of the magnetic energy is calculated as

∆W =
B2

2µ0

πr2∆l =
Φ2

2µ0πr2
∆l.

This energy increase is achieved owing to the work done by the

stretching force, ∆W = T∆l. Hence, the force

T =
Φ2

2µ0πr2
.

iii. (2.5 pts) Let us analyse, what would be the change of

the magnetic energy when one of the straws is displaced to a

small distance. The magnetic field inside the tubes will remain

constant due to the conservation of magnetic flux, but outside,

the magnetic field will be changed. The magnetic field out-

side the straws is defined by the following condition: there is

no circulation of ~B (because there are no currents outside the

straws); there are no sources of the field lines, other than the

endpoints of the straws; each of the endpoints of the straws is

a source of streamlines with a fixed magnetic flux ±Φ. These

are exactly the same condition as those which define the elec-

tric field of four charges ±Q. We know that if the distance

between charges is much larger than the geometrical size of

a charge, the charges can be considered as point charges (the

electric field near the charges remains almost constant, so that

the respective contribution to the change of the overall electric

field energy is negligible). Therefore we can conclude that the

endpoints of the straws can be considered as magnetic point

charges. In order to calculate the force between two magnetic

charges (magnetic monopoles), we need to establish the corres-

pondence between magnetic and electric quantities.

For two electric charges Q separated by a distance a, the

force is F = 1

4πε0

Q2

a2 , and at the position of one charge, the elec-

tric field of the other charge has energy density w = 1

32π2ε0

Q2

a4 ;

hence we can write F = 8πwa2. This is a universal expression

for the force (for the case when the field lines have the same

shape as in the case of two opposite and equal by modulus elec-

tric charges) relying only on the energy density, and not related

to the nature of the field; so we can apply it to the magnetic
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field. Indeed, the force can be calculated as a derivative of

the full field energy with respect to a virtual displacement of

a field line source (electric or magnetic charge); if the energy

densities of two fields are respectively equal at one point, they

are equal everywhere, and so are equal the full field energies.

As it follows from the Gauss law, for a point source of a fixed

magnetic flux Φ at a distance a, the induction B = 1

4π
Φ

a2 . So,

the energy density w = B2

2µ0

= 1

32π2µ0

Φ
2

a4 , hence

F =
1

4πµ0

Φ2

a2
.

For the two straws, we have four magnetic charges. The lon-

gitudinal (along a straw axis) forces cancel out (the diagonally

positioned pairs of same-sign-charges push in opposite direc-

tions). The normal force is a superposition of the attraction

due to the two pairs of opposite charges, F1 = 1

4πµ0

Φ
2

l2 , and

the repulsive forces of diagonal pairs, F2 =
√

2

8πµ0

Φ
2

2l2 . The net

attractive force will be

F = 2(F1 − F2) =
4 −

√
2

8πµ0

Φ2

l2
.
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