Problem T2. Kelvin water dropper (8 points)
Part A. Single pipe (4 points)
i. (1.2 pts)

$$
r_{\max }=\sqrt[3]{\frac{3 \sigma d}{4 \rho g}}
$$

ii. (1.2 pts)

$$
Q=4 \pi \varepsilon_{0} \varphi r
$$

iii. (1.6 pts)

$$
\varphi_{\max }=2 \sqrt{\sigma r / \varepsilon_{0}}
$$

Part B. Two pipes (4 points)
i. (1.2 pts)

$$
Q_{0}=2 \pi \varepsilon_{0} q r_{\max } / C
$$

ii. (1.5 pts)

$$
q(t)=q_{0} e^{\gamma t}, \quad \gamma=\frac{\pi \varepsilon_{0} n}{C} \sqrt[3]{\frac{6 \sigma d}{\rho g}}
$$

iii. (1.3 pts)

$$
U_{\max }=\sqrt[6]{\frac{H^{3} g \sigma^{2} \rho d^{2}}{6 \varepsilon_{0}^{3}}}
$$

