
Problem T3. Protostar formation (9 points)
i. (0.8 pts)

T = const =⇒ pV = const

V ∝ r3

∴ p ∝ r−3 =⇒
p(r1)

p(r0)
= 23 = 8.

ii. (1 pt) During the period considered the pressure is negli-

gible. Therefore the gas is in free fall. By Gauss’ theorem and

symmetry, the gravitational field at any point in the ball is

equivalent to the one generated when all the mass closer to the

center is compressed into the center. Moreover, while the ball

has not yet shrunk much, the field strength on its surface does

not change much either. The acceleration of the outermost

layer stays approximately constant. Thus,

t ≈

√

2(r0 − r2)

g

where

g ≈
Gm

r2
0

,

∴ t ≈
√

2r2
0(r0 − r2)

Gm
=

√

0.1r3
0

Gm
.

iii. (2.5 pts) Gravitationally the outer layer of the ball is in-

fluenced by the rest just as the rest were compressed into a

point mass. Therefore we have Keplerian motion: the fall of

any part of the outer layer consists in a halfperiod of an ultra-

elliptical orbit. The ellipse is degenerate into a line; its foci are

at the ends of the line; one focus is at the center of the ball (by

Kepler’s 1st law) and the other one is at r0, see figure (instead

of a degenerate ellipse, a strongly elliptical ellipse is depicted).

The period of the orbit is determined by the longer semiaxis of

the ellipse (by Kepler’s 3rd law). The longer semiaxis is r0/2

and we are interested in half a period. Thus, the answer is

equal to the halfperiod of a circular orbit of radius r0/2:

(

2π

2tr→0

)2
r0

2
=

Gm

(r0/2)2
=⇒ tr→0 = π

√

r3
0

8Gm
.

Alternatively, one may write the energy conservation law
ṙ2

2
− Gm

r
= E (that in turn is obtainable from Newton’s

II law r̈ = − Gm
r2 ) with E = − Gm

r0

, separate the variables

( dr
dt

= −
√

2E + 2Gm
r

) and write the integral t = −
∫

dr√
2E+ 2Gm

r

.

This integral is probably not calculable during the limitted

time given during the Olympiad, but a possible approach can

be sketched as follows. Substituting
√

2E + 2Gm
r

= ξ and
√

2E = υ, one gets

t∞

4Gm
=

∫ ∞

0

dξ

(υ2 − ξ2)
2

=
1

4υ3

∫ ∞

0

[

υ

(υ − ξ)2
+

υ

(υ + ξ)2
+

1

υ − ξ
+

1

υ + ξ

]

dξ.

Here (after shifting the variable) one can use
∫

dξ
ξ

= ln ξ and
∫

dξ
ξ2 = − 1

ξ
, finally getting the same answer as by Kepler’s laws.

iv. (1.7 pts) By Clapeyron–Mendeleyev law,

p =
mRT0

µV
.

Work done by gravity to compress the ball is

W = −
∫

p dV = −
mRT0

µ

∫ 4

3
πr3

3

4

3
πr3

0

dV

V
=

3mRT0

µ
ln

r0

r3

.

The temperature stays constant, so the internal energy does not

change; hence, according to the 1st law of thermodynamics, the

compression work W is the heat radiated.

v. (1 pt) The collapse continues adiabatically.

pV γ = const =⇒ TV γ−1 = const.

∴ T ∝ V 1−γ ∝ r3−3γ

∴ T = T0

(r3

r

)3γ−3

.

vi. (2 pts) During the collapse, the gravitational energy is con-

verted into heat. Since r3 ≫ r4, The released gravitational en-

ergy can be estimated as ∆Π = −Gm2(r−1
4 −r−1

3 ) ≈ −Gm2/r4

(exact calculation by integration adds a prefactor 3

5
); the ter-

minal heat energy is estimated as ∆Q = cV
m
µ

(T4 − T0) ≈
cV

m
µ

T4 (the approximation T4 ≫ T0 follows from the result

of the previous question, when combined with r3 ≫ r4). So,

∆Q = R
γ−1

m
µ

T4 ≈ m
µ

RT4. For the temperature T4, we can use

the result of the previous question, T4 = T0

(

r3

r4

)3γ−3

. Since

initial full energy was approximately zero, ∆Q + ∆Π ≈ 0, we

obtain

Gm2

r4

≈
m

µ
RT0

(

r3

r4

)3γ−3

=⇒ r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

.

Therefore,

T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ

.

Alternatively, one can obtain the result by approximately

equating the hydrostatic pressure ρr4
Gm
r2

4

to the gas pressure

p4 = ρ
µ

RT4; the result will be exactly the same as given above.
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