be sketched as follows. Substituting $\sqrt{2 E+\frac{2 G m}{r}}=\xi$ and $\sqrt{2 E}=v$, one gets

$$
\begin{aligned}
\frac{t_{\infty}}{4 G m} & =\int_{0}^{\infty} \frac{d \xi}{\left(v^{2}-\xi^{2}\right)^{2}} \\
& =\frac{1}{4 v^{3}} \int_{0}^{\infty}\left[\frac{v}{(v-\xi)^{2}}+\frac{v}{(v+\xi)^{2}}+\frac{1}{v-\xi}+\frac{1}{v+\xi}\right] d \xi
\end{aligned}
$$

Here (after shifting the variable) one can use $\int \frac{d \xi}{\xi}=\ln \xi$ and $\int \frac{d \xi}{\xi^{2}}=-\frac{1}{\xi}$, finally getting the same answer as by Kepler's laws. iv. (1.7 pts) By Clapeyron-Mendeleyev law,

$$
p=\frac{m R T_{0}}{\mu V} .
$$

Work done by gravity to compress the ball is

$$
W=-\int p d V=-\frac{m R T_{0}}{\mu} \int_{\frac{4}{3} \pi r_{0}^{3}}^{\frac{4}{3} \pi r_{3}^{3}} \frac{d V}{V}=\frac{3 m R T_{0}}{\mu} \ln \frac{r_{0}}{r_{3}} .
$$

The temperature stays constant, so the internal energy does not change; hence, according to the $1^{\text {st }}$ law of thermodynamics, the compression work W is the heat radiated.
v. (1 pt) The collapse continues adiabatically.

$$
\begin{aligned}
& p V^{\gamma}=\text { const } \Longrightarrow T V^{\gamma-1}=\text { const. } \\
& \therefore T \propto V^{1-\gamma} \propto r^{3-3 \gamma} \\
& \therefore T=T_{0}\left(\frac{r_{3}}{r}\right)^{3 \gamma-3} .
\end{aligned}
$$

vi. (2 pts) During the collapse, the gravitational energy is converted into heat. Since $r_{3} \gg r_{4}$, The released gravitational energy can be estimated as $\Delta \Pi=-G m^{2}\left(r_{4}^{-1}-r_{3}^{-1}\right) \approx-G m^{2} / r_{4}$ (exact calculation by integration adds a prefactor $\frac{3}{5}$); the terminal heat energy is estimated as $\Delta Q=c_{V} \frac{m}{\mu}\left(T_{4}-T_{0}\right) \approx$ $c_{V} \frac{m}{\mu} T_{4}$ (the approximation $T_{4} \gg T_{0}$ follows from the result of the previous question, when combined with $r_{3} \gg r_{4}$). So, $\Delta Q=\frac{R}{\gamma-1} \frac{m}{\mu} T_{4} \approx \frac{m}{\mu} R T_{4}$. For the temperature T_{4}, we can use the result of the previous question, $T_{4}=T_{0}\left(\frac{r_{3}}{r_{4}}\right)^{3 \gamma-3}$. Since initial full energy was approximately zero, $\Delta Q+\Delta \Pi \approx 0$, we obtain

$$
\frac{G m^{2}}{r_{4}} \approx \frac{m}{\mu} R T_{0}\left(\frac{r_{3}}{r_{4}}\right)^{3 \gamma-3} \Longrightarrow r_{4} \approx r_{3}\left(\frac{R T_{0} r_{3}}{\mu m G}\right)^{\frac{1}{3 \gamma-4}}
$$

Therefore,

$$
T_{4} \approx T_{0}\left(\frac{R T_{0} r_{3}}{\mu m G}\right)^{\frac{3 \gamma-3}{4-3 \gamma}}
$$

Alternatively, one can obtain the result by approximately equating the hydrostatic pressure $\rho r_{4} \frac{G m}{r_{4}^{2}}$ to the gas pressure $p_{4}=\frac{\rho}{\mu} R T_{4}$; the result will be exactly the same as given above.

